CMB Non-Gaussianity:
Modal Methods
Trans-Planckian vacua

Paul Shellard

Centre for Theoretical Cosmology, Cambridge

James Fergusson, Michele Liguori & Donough Regan

also Hiro Funakoshi and Marcel Schmittfull

arXiv: today ...

arXiv:1006.1642

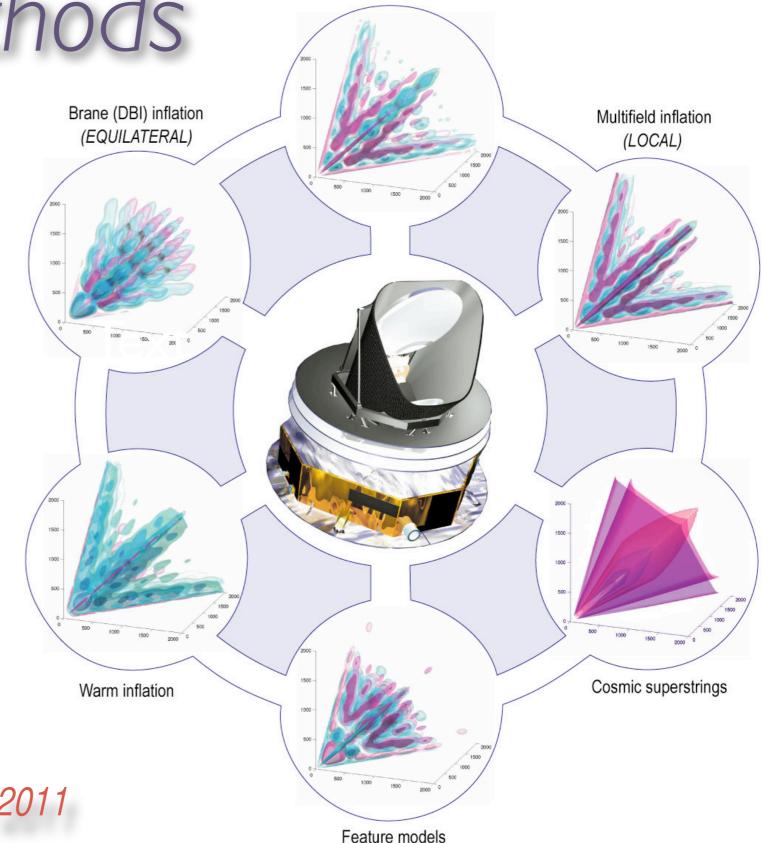
arXiv:1012.6039

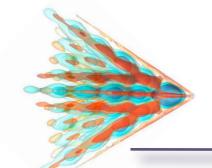
arXiv:1008.1730

(arXiv:1004.2915), arXiv:0912.5516,

arXiv:0812.3413, astro-ph/0612713

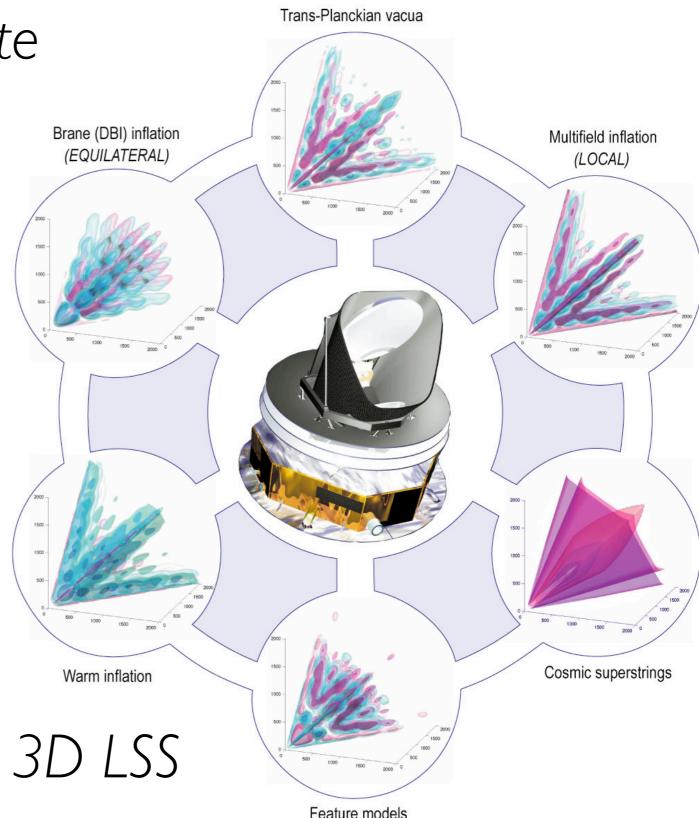
Michigan NG Workshop • May 2011

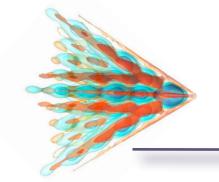




Modal motivations

- Generic early & late
- Highly efficient
- Reconstruction
- Blind survey
- Optimal
- Simulations
- Planck resolution
- CMB polyspectra & 3D LSS





Background

• The primordial bispectrum and trispectrum* are defined by

$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3) \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B(k_1, k_2, k_3)$$
$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3 \Phi(\mathbf{k}_4)) \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) T(k_1, k_2, k_3, k_4)$$

• For the CMB the bispectrum and trispectrum* are defined by

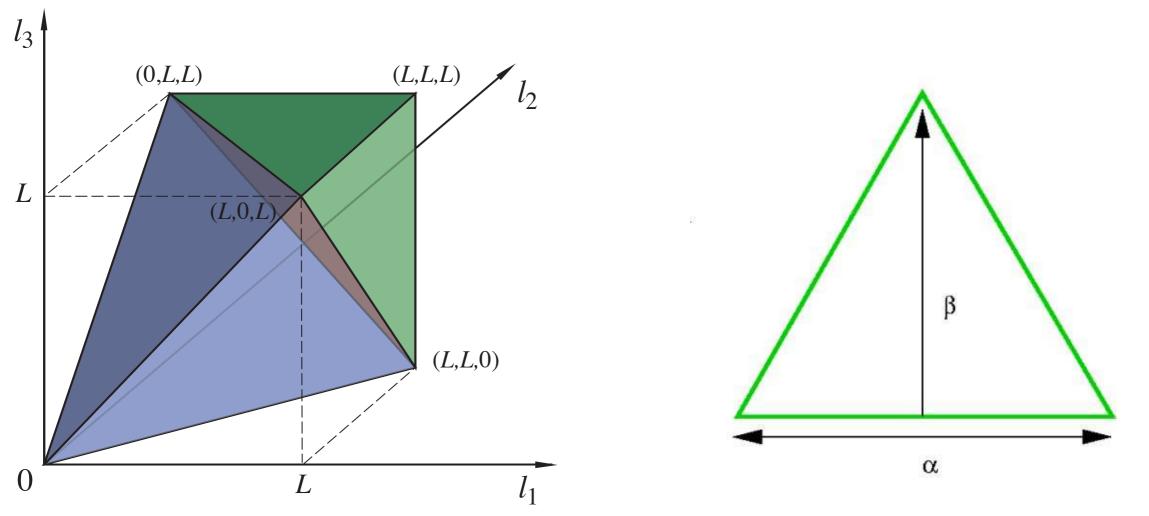
$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}\rangle = \left(\int d^2\hat{n}Y_{l_1m_1}(\hat{\mathbf{n}})Y_{l_2m_2}(\hat{\mathbf{n}})Y_{l_3m_3}(\hat{\mathbf{n}})\right)b_{l_1l_2l_3}$$

$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}a_{l_4m_4}\rangle = \left(\int d^2\hat{n}Y_{l_1m_1}(\hat{\mathbf{n}})Y_{l_2m_2}(\hat{\mathbf{n}})Y_{l_3m_3}(\hat{\mathbf{n}})Y_{l_4m_4}(\hat{\mathbf{n}})\right)t_{l_1l_2l_3l_4}$$

^{*} For simplicity we give formulae only for diagonal-free trispectra.

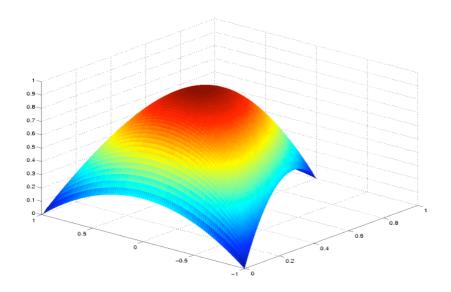
TETRAPYD DOMAIN

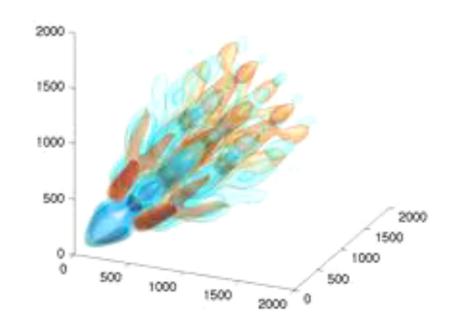
There is a triangle condition on the three k or L so the domain for the bispectrum is a tetrahedron (tetrapyd)

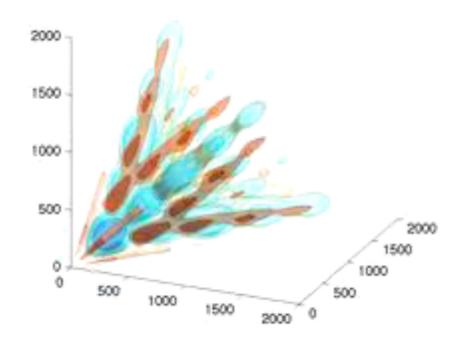


For scale-invariant bispectra (k⁻⁶), we define the shape

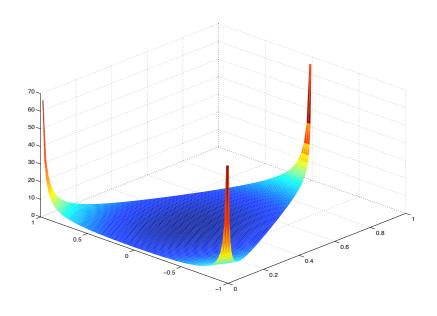
$$S(k_1, k_2, k_3) \equiv \frac{1}{N} (k_1 k_2 k_3)^2 B_{\Phi}(k_1, k_2, k_3)$$







KK Multifield Inflation



Many challenges

• THEORETICAL - To project the primordial correlators to their late time counterparts we must perform the integrals

$$b_{l_1 l_2 l_3} = \left(\frac{2}{\pi}\right)^3 \int x^2 dx \int dk_1 dk_2 dk_3 (k_1 k_2 k_3)^2 B(k_1, k_2, k_3) \Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) j_{l_1}(x k_1) j_{l_2}(x k_2) j_{l_3}(x k_3)$$

$$t_{l_1 l_2 l_3 l_4} = \left(\frac{2}{\pi}\right)^4 \int x^2 dx \int dk_1 dk_2 dk_3 dk_4 (k_1 k_2 k_3 k_4)^2 T(k_1, k_2, k_3, k_4) \Delta_{l_1}(k_1) \Delta_{l_2}(k_2) \Delta_{l_3}(k_3) \Delta_{l_4}(k_4) j_{l_1}(x k_1) \dots$$

• DATA ANALYSIS - We endeavour to determine the goodness of fit between theory and the CMB with the estimator

$$\mathcal{E} = \sum_{l_i m_i} \frac{\langle a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3} \rangle^{f_{NL}=1} a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}}$$

$$= \sum_{l_i m_i} \frac{\int Y_{l_1 m_2} Y_{l_2 m_2} Y_{l_3 m_3} b_{l_1 l_2 l_3}^{f_{NL}=1} a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}^{l_i}}{C_{l_1} C_{l_2} C_{l_3}}$$

TRACTABILITY = SEPARABILITY

$$S(k_1, k_2, k_3) = X(k_1) Y(k_2) Z(k_3) + 5$$
 perms.

$$b_{\ell_1 \ell_2 \ell_3} = \int dr r^2 X_{\ell_1}(r) Y_{\ell_2}(r) Z_{\ell_3}(r) + 5 \text{ perms}$$

$$\mathcal{E}(a) = \frac{1}{N} \int dr r^2 \int d\Omega_{\hat{\mathbf{n}}} M_X(r, \hat{\mathbf{n}}) M_Y(r, \hat{\mathbf{n}}) M_Z(r, \hat{\mathbf{n}})$$

$$X_{\ell}(r) \equiv \int dkk^{2} X(k) j_{\ell}(kr) \Delta_{\ell}$$

$$M_{X}(r, \hat{\mathbf{n}}) \equiv \sum_{\ell m} \frac{a_{\ell m} X_{\ell}(r)}{C_{\ell}} Y_{\ell m}(\hat{\mathbf{n}})$$

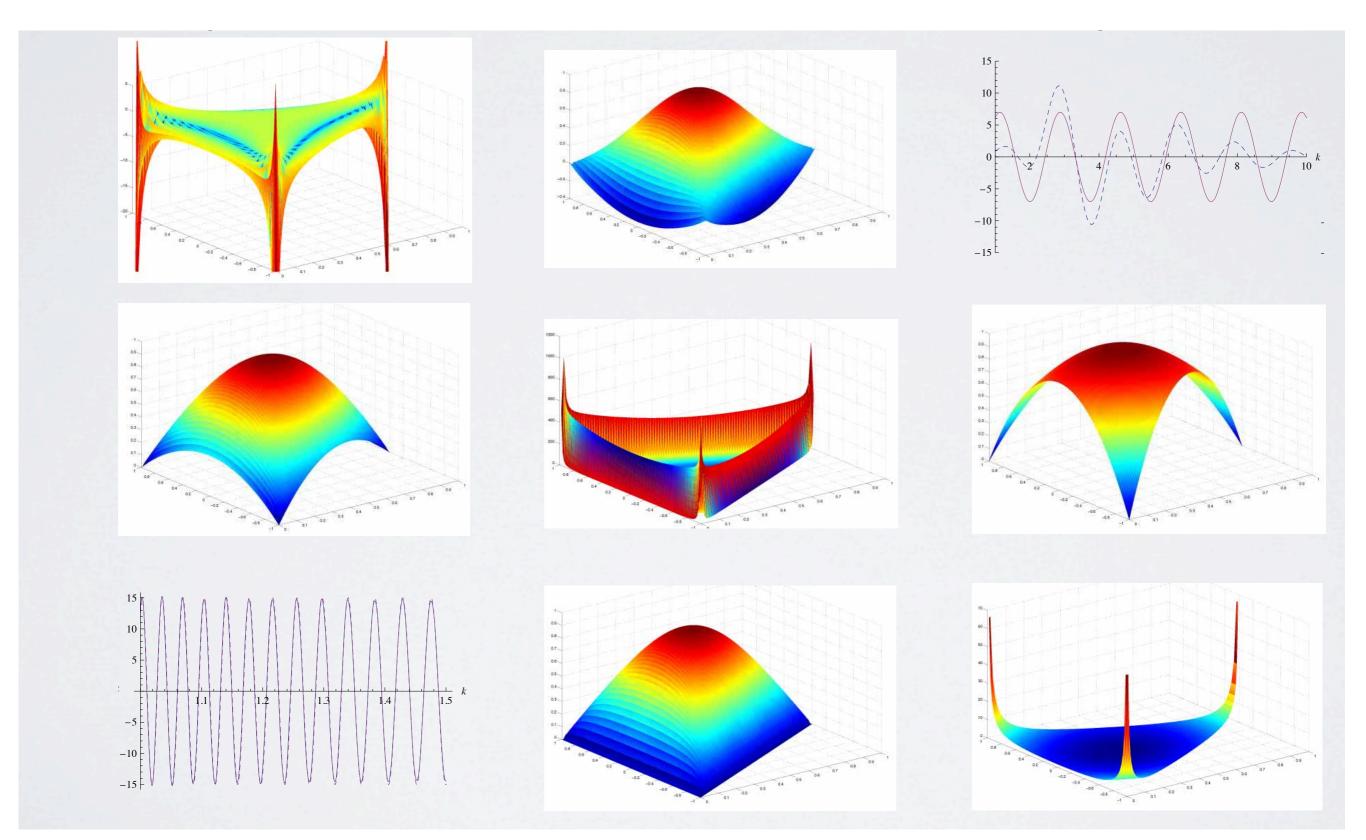
$$Y_{\ell}(r) \equiv \int dkk^{2} Y(k) j_{\ell}(kr) \Delta_{\ell}$$

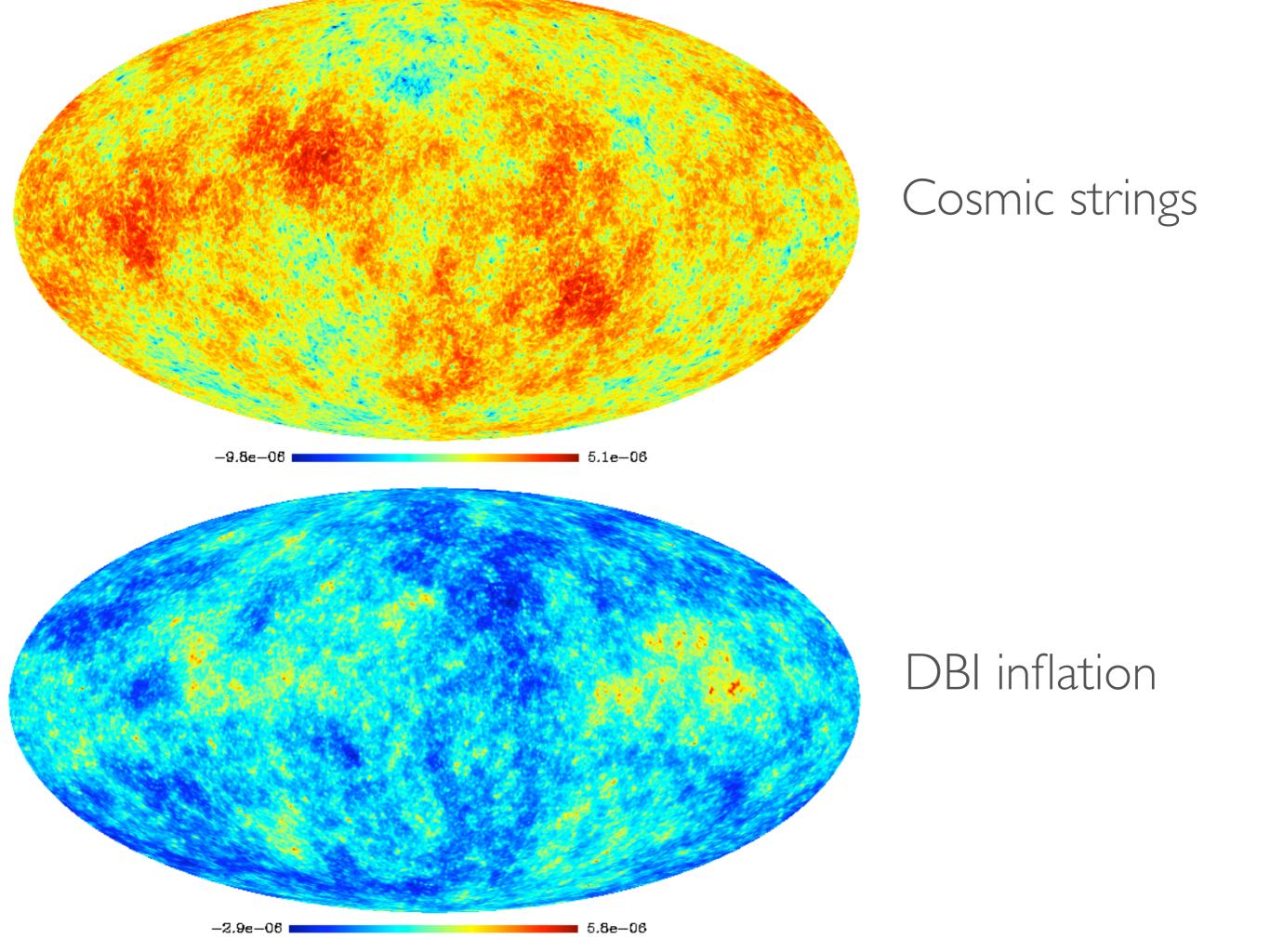
$$M_{Y}(r, \hat{\mathbf{n}}) \equiv \sum_{\ell m} \frac{a_{\ell m} Y_{\ell}(r)}{C_{\ell}} Y_{\ell m}(\hat{\mathbf{n}})$$

$$Z_{\ell}(r) \equiv \int dkk^{2} Z(k) j_{\ell}(kr) \Delta_{\ell}$$

$$M_{Z}(r, \hat{\mathbf{n}}) \equiv \sum_{\ell m} \frac{a_{\ell m} Z_{\ell}(r)}{C_{\ell}} Y_{\ell m}(\hat{\mathbf{n}})$$

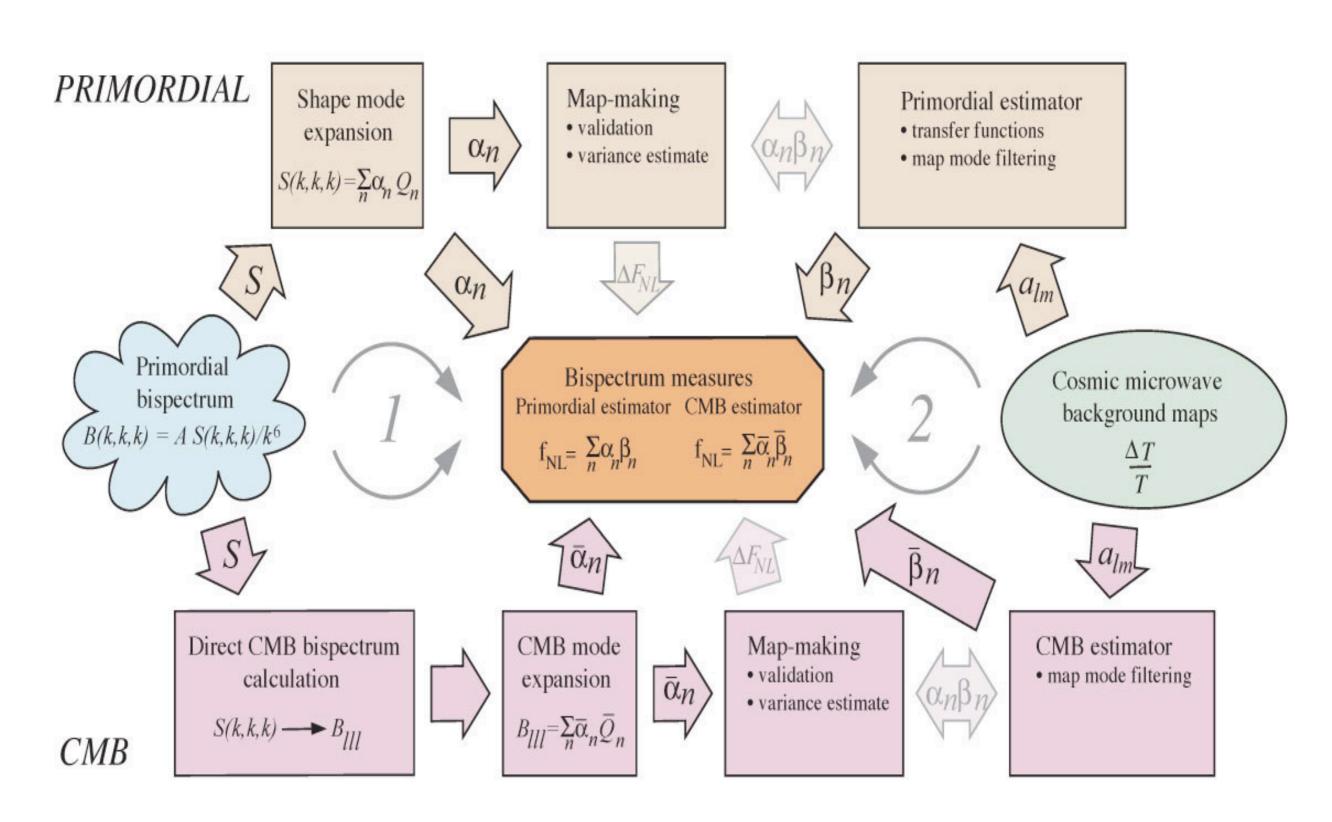
BUT there are many possible shapes predicted for the primordial bispectrum, few of which are separable

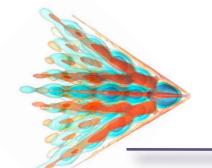




General Bispectrum Estimator Pipeline

Fergusson, Ligouri and EPS arXiv: 0912.5516

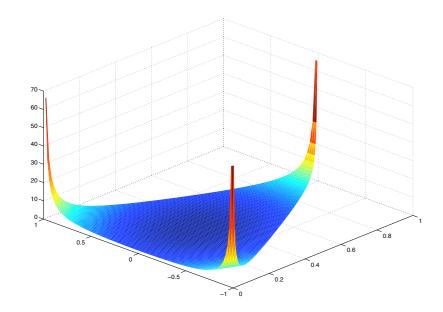


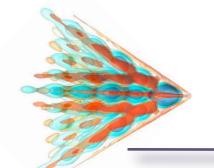


ESTIMATOR

EVOLUTION BY TRANSFER FUNCTIONS OBSERVED OR SIMULATED CMB MAPS

Primordial isotropic polyspectra space



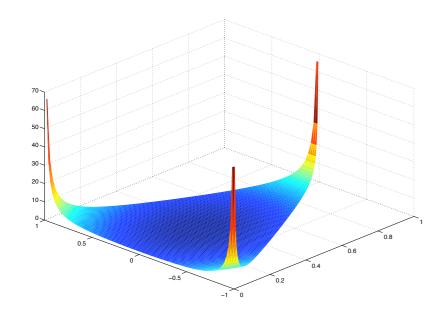


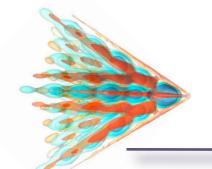
EVOLUTION BY TRANSFER FUNCTIONS

ESTIMATOR

OBSERVED OR SIMULATED CMB MAPS

Primordial isotropic polyspectra space



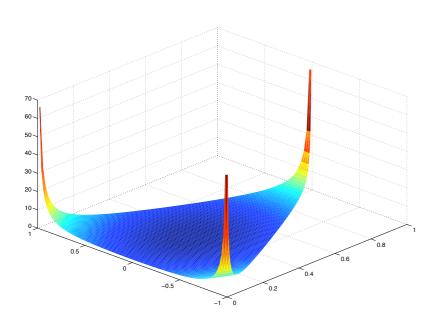


EVOLUTION BY TRANSFER FUNCTIONS

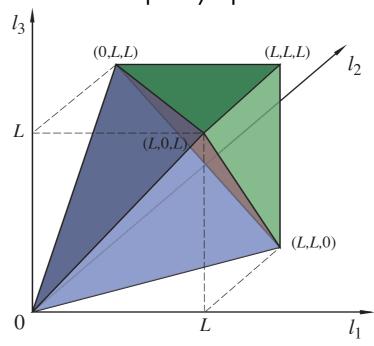
ESTIMATOR

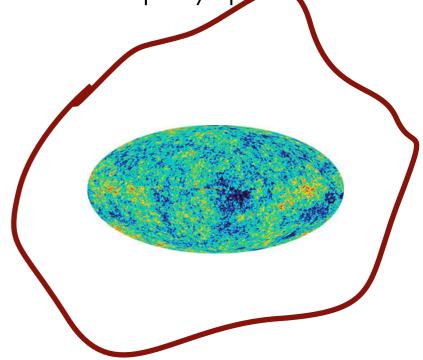
OBSERVED OR SIMULATED CMB MAPS

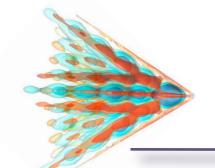
Primordial isotropic polyspectra space



Projected space V_P of CMB polyspectra







PRIMORDIAL POLYSPECTRA

EVOLUTION BY TRANSFER FUNCTIONS

ESTIMATOR

OBSERVED OR SIMULATED CMB MAPS

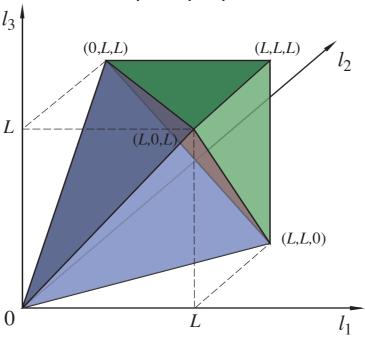
Primordial isotropic polyspectra space

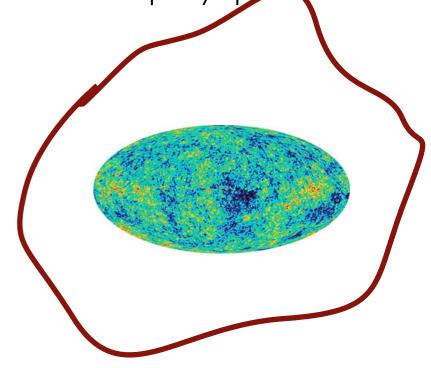
pectra space of

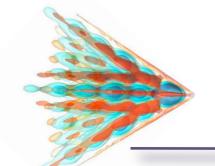
Expand model with primordial modes

To a serious primordial modes

Projected space V_P of CMB polyspectra







PRIMORDIAL POLYSPECTRA

EVOLUTION BY TRANSFER FUNCTIONS

ESTIMATOR

OBSERVED OR SIMULATED CMB MAPS

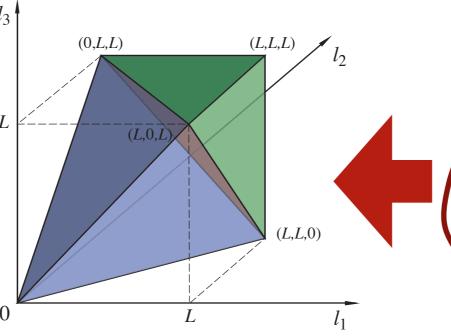
Primordial isotropic polyspectra space

primordial modes

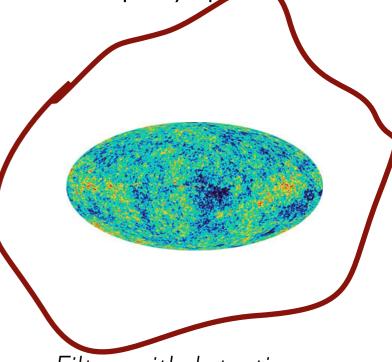
Mode transfer Expand model with

functions

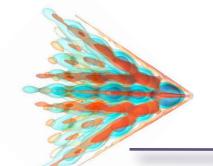
Projected space V_P of CMB polyspectra



Space V of possible CMB polyspectra



Filter with late-time projected modes



PRIMORDIAL POLYSPECTRA EVOLUTION BY TRANSFER FUNCTIONS

ESTIMATOR

OBSERVED OR SIMULATED CMB MAPS

Primordial isotropic polyspectra space

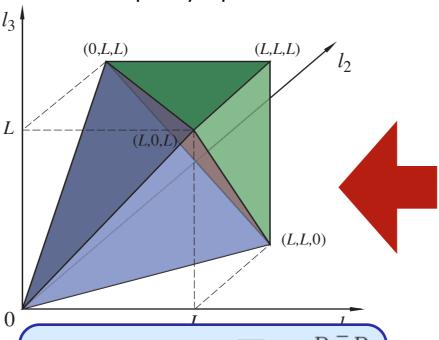
Expand model with

primordial modes

70 60 40 30 20 10 0.5 0.6 Mode transfer

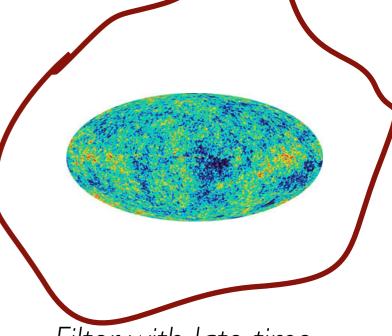
functions

Projected space V_P of CMB polyspectra

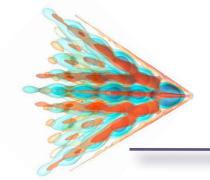


Modal $\mathcal{E} = \frac{\sum_{n} \bar{\alpha}_{n}^{R} \beta_{n}^{R}}{\sum_{n} (\bar{\alpha}_{n}^{R})^{2}}$

Space V of possible CMB polyspectra



Filter with late-time projected modes



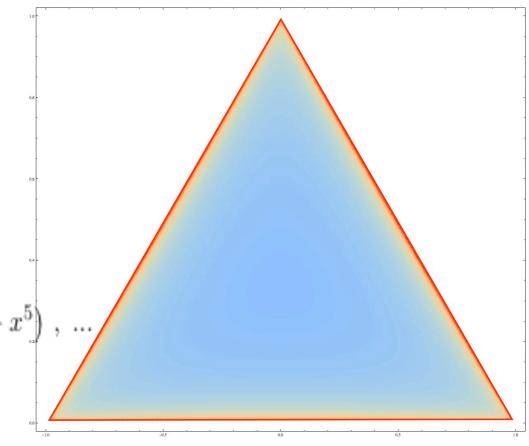
PRIMORDIAL MODES

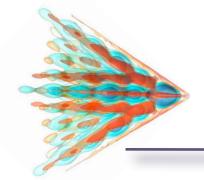
Expand the shape using separable basis functions

$$S(k_1, k_2, k_3) = \sum_{p} \sum_{r} \sum_{s} \alpha_{prs} q_p(k_1) q_r(k_2) q_s(k_3)$$

Choose separable polynomials on the weighted tetrapyd

$$\begin{array}{ll} q_0(x) &=& \sqrt{2}\,,\\ q_1(x) &=& 5.787 \left(-\frac{7}{12}+x\right)\,,\\ q_2(x) &=& 23.32 \left(\frac{54}{215}-\frac{48}{43}x+x^2\right)\,,\\ q_3(x) &=& 93.83 \left(-0.09337+0.7642\,x-1.631\,x^2+x^3\right)\,,\\ q_4(x) &=& 376.9 \left(0.03192-0.4126\,x+1.531\,x^2-2.139\,x^3+x^4\right)\,,\\ q_5(x) &=& 1512 \left(-0.01033+0.1929\,x-1.084\,x^2+2.549\,x^3-2.644\,x^4+x^5\right)\,,\ \dots\end{array}$$



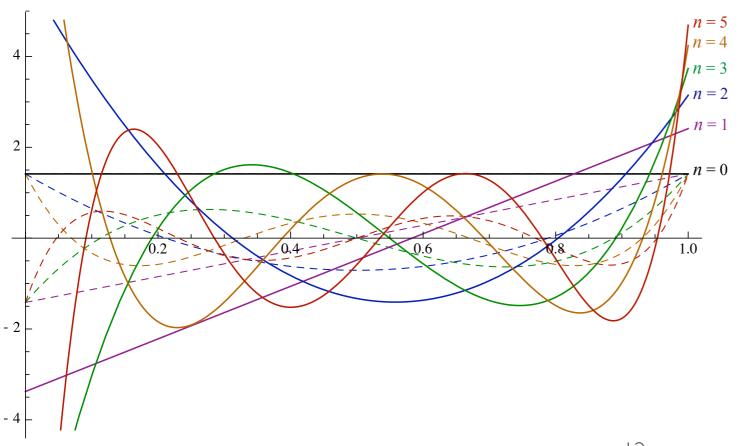


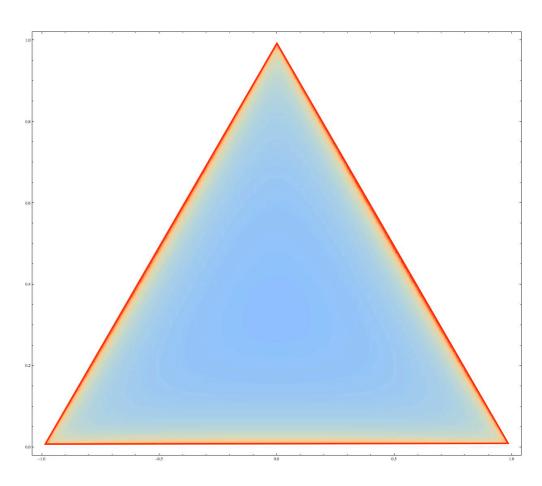
PRIMORDIAL MODES

Expand the shape using separable basis functions

$$S(k_1, k_2, k_3) = \sum_{p} \sum_{r} \sum_{s} \alpha_{prs} q_p(k_1) q_r(k_2) q_s(k_3)$$

Choose separable polynomials on the weighted tetrapyd



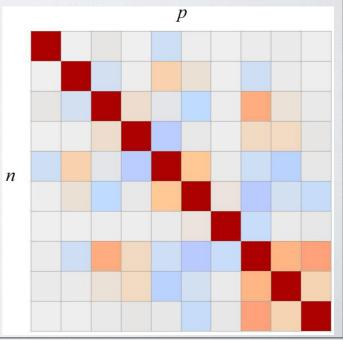


ORTHONORMAL BASIS

Next, as the shape function is symmetric in the three k, we create a symmetric product of the three polynomials of different orders which we label with n

$$Q_n(x, y, z) = \frac{1}{6N} \left[q_p(x) q_r(y) q_s(z) + q_r(x) q_s(y) q_p(z) + q_s(x) q_p(y) q_r(z) + q_p(x) q_s(y) q_r(z) + q_s(x) q_r(y) q_p(z) + q_r(x) q_p(y) q_s(z) \right]$$

$$\equiv q_{\{p} q_r q_{s\}} \quad \text{with} \quad n \leftrightarrow \{prs\},$$



20

Finally we orthonormalise the Q to create our basis R

$$\langle \mathcal{R}_n, \mathcal{R}_p \rangle = \delta_{np}$$
 $\mathcal{R}_m = \sum_{p=0}^m \lambda_{mp} \mathcal{Q}_p$ for $m, p \leq n$

Orthonormal basis

Now we need to calculate λ_{nm}

$$\langle R_n R_m \rangle = \lambda_{nr} \lambda_{ms} \langle Q_r Q_s \rangle$$
$$\langle Q_r Q_s \rangle = \gamma_{rs}$$
$$I = \lambda \gamma \lambda^T$$

And rearranging noting that λ_{nm} is lower triangular we find it is the inverse of the Cholesky decomposition of the γ_{rs} matrix

$$\gamma = \lambda^{-1} \lambda^{-1}^T$$

What should we decompose? To get the best correlation we should try to expand the reduced bispectrum with a separable weight which is as close to the square root of the estimator as possible

$$\frac{v_{l_1}v_{l_2}v_{l_3}}{\sqrt{C_{l_1}C_{l_2}C_{l_3}}} b_{l_1l_2l_3} = \sum_{n} \bar{\alpha}_n^{\mathcal{Q}} \bar{\mathcal{Q}}_n$$

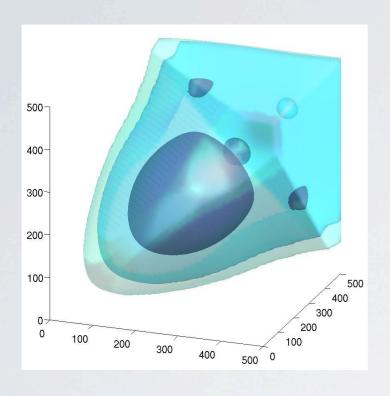
$$v_l = (2l+1)^{1/6} \qquad \sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}} \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix}$$

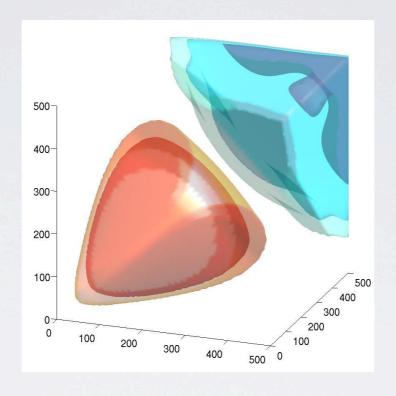
Orthonormal CMB basis

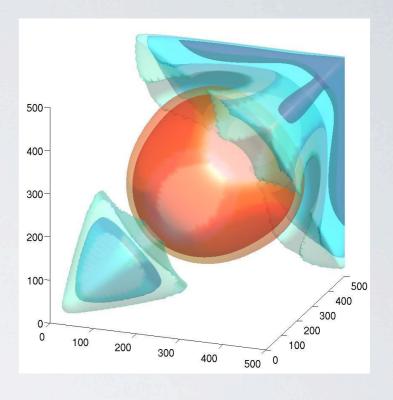
So what is the inner product now?

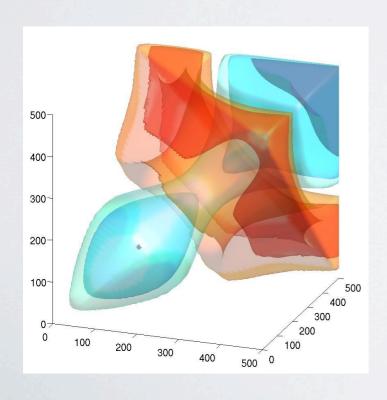
$$\begin{split} \mathcal{E} &= \sum_{l_i m_i} \frac{\int Y_{l_1 m_2} Y_{l_2 m_2} Y_{l_3 m_3} b_{l_1 l_2 l_3} a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}} \\ &= \sum_{l_i m_i} \left(\int Y_{l_1 m_2} Y_{l_2 m_2} Y_{l_3 m_3} \right)^2 \frac{b_{l_1 l_2 l_3}^{th} b_{l_1 l_2 l_3}^{obs}}{C_{l_1} C_{l_2} C_{l_3}} \\ &= \sum_{l_i m_i} \left(\int \frac{Y_{l_1 m_2} Y_{l_2 m_2} Y_{l_3 m_3}}{v_{l_1} v_{l_2} v_{l_3}} \right)^2 \frac{v_{l_1} v_{l_2} v_{l_3} b_{l_1 l_2 l_3}^{th}}{\sqrt{C_{l_1} C_{l_2} C_{l_3}}} \frac{v_{l_1} v_{l_2} v_{l_3} b_{l_1 l_2 l_3}^{obs}}{\sqrt{C_{l_1} C_{l_2} C_{l_3}}} \end{split}$$

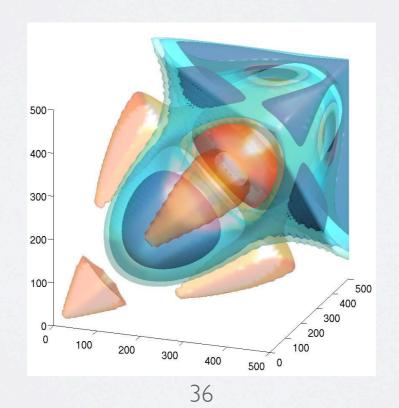
And we choose v to make the weight as flat as possible

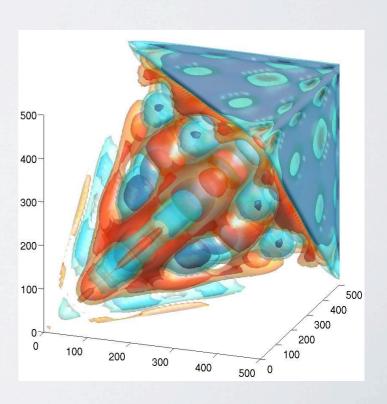






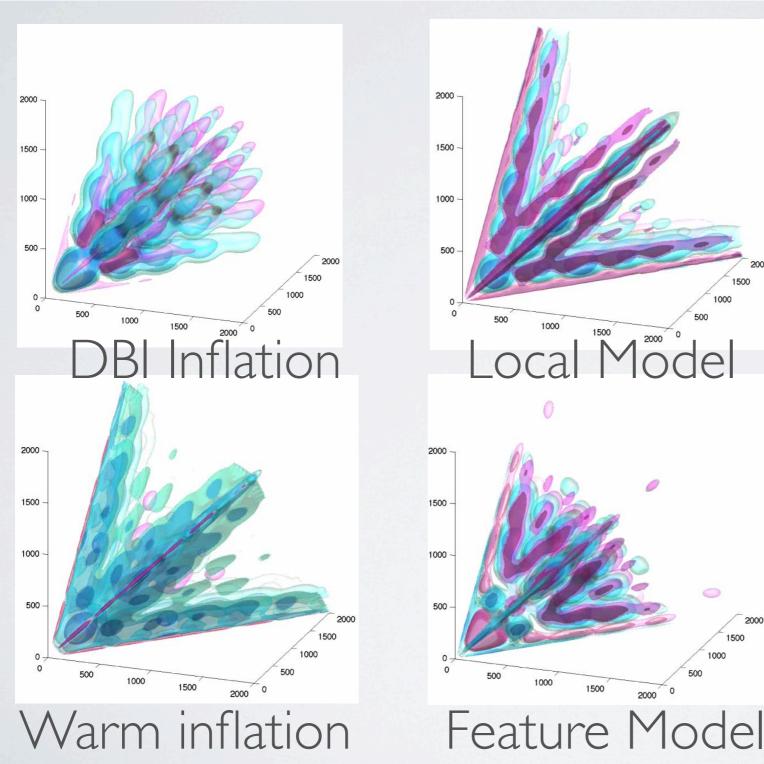






Applicable to inflation, defects, secondaries

Planck resolution CMB bispectra (multipoles I₁,I₂,I₃)



Trans-Planckian Cosmic strings

Primordial to CMB basis

Use transfer functions <u>once</u> to project forward primordial modes so we calculate

$$\Gamma_{nm} = \left\langle \bar{Q}^n \frac{vvv\tilde{Q}^m}{\sqrt{CCC}} \right\rangle$$

Then we can transform between the primordial and CMB expansions

$$\bar{\alpha}^Q = \bar{\gamma}^{-1} \Gamma \alpha^Q$$

$$\mathcal{E} = \sum_{l_i, m_i} \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \bar{q}_{\{p} \bar{q}_r \bar{q}_s\} \int d^2 \hat{\mathbf{n}} \, Y_{l_2 m_2}(\hat{\mathbf{n}}) Y_{l_1 m_1}(\hat{\mathbf{n}}) \, Y_{l_3 m_3}(\hat{\mathbf{n}}) \, \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{v_{l_1} v_{l_2} v_{l_3} \sqrt{C_{l_1} C_{l_2} C_{l_3}}}$$

$$= \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \int d^2 \hat{\mathbf{n}} \left(\sum_{l_1, m_1} \bar{q}_{\{p} \, \frac{a_{l_1 m_1} Y_{l_1 m_1}}{v_{l_1} \sqrt{C_{l_1}}} \right) \left(\sum_{l_2, m_2} \bar{q}_r \, \frac{a_{l_2 m_2} Y_{l_2 m_2}}{v_{l_2} \sqrt{C_{l_2}}} \right) \left(\sum_{l_3, m_3} \bar{q}_{s\}} \, \frac{a_{l_3 m_3} Y_{l_3 m_3}}{v_{l_3} \sqrt{C_{l_3}}} \right)$$

$$\bar{M}_p(\mathbf{\hat{n}}) = \sum_{lm} q_p(l) \frac{a_{lm}}{v_l \sqrt{C_l}} Y_{lm}(\mathbf{\hat{n}})$$

$$\bar{\mathcal{M}}_n(\mathbf{\hat{n}}) = \bar{M}_p(\mathbf{\hat{n}})\bar{M}_r(\mathbf{\hat{n}})\bar{M}_s(\mathbf{\hat{n}})$$

$$\beta_n = \int d^2 \hat{\mathbf{n}} \mathcal{M}_n(\hat{\mathbf{n}})$$

$$\mathcal{E} = \frac{1}{N} \sum_{n=0}^{n_{\text{max}}} \bar{\alpha}_n^{\mathcal{Q}} \bar{\beta}_n^{\mathcal{Q}}$$

Now the projection is in alpha rather than beta

$$\mathcal{E} = \sum_{l_i, m_i} \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \bar{q}_{\{p} \bar{q}_r \bar{q}_s\} \int d^2 \hat{\mathbf{n}} \, Y_{l_2 m_2}(\hat{\mathbf{n}}) Y_{l_1 m_1}(\hat{\mathbf{n}}) \, Y_{l_3 m_3}(\hat{\mathbf{n}}) \, \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{v_{l_1} v_{l_2} v_{l_3} \sqrt{C_{l_1} C_{l_2} C_{l_3}}}$$

$$= \sum_{n \leftrightarrow prs} \bar{\alpha}_n^{\mathcal{Q}} \int d^2 \hat{\mathbf{n}} \left(\sum_{l_1, m_1} \bar{q}_{\{p} \, \frac{a_{l_1 m_1} Y_{l_1 m_1}}{v_{l_1} \sqrt{C_{l_1}}} \right) \left(\sum_{l_2, m_2} \bar{q}_r \, \frac{a_{l_2 m_2} Y_{l_2 m_2}}{v_{l_2} \sqrt{C_{l_2}}} \right) \left(\sum_{l_3, m_3} \bar{q}_{s\}} \, \frac{a_{l_3 m_3} Y_{l_3 m_3}}{v_{l_3} \sqrt{C_{l_3}}} \right)$$

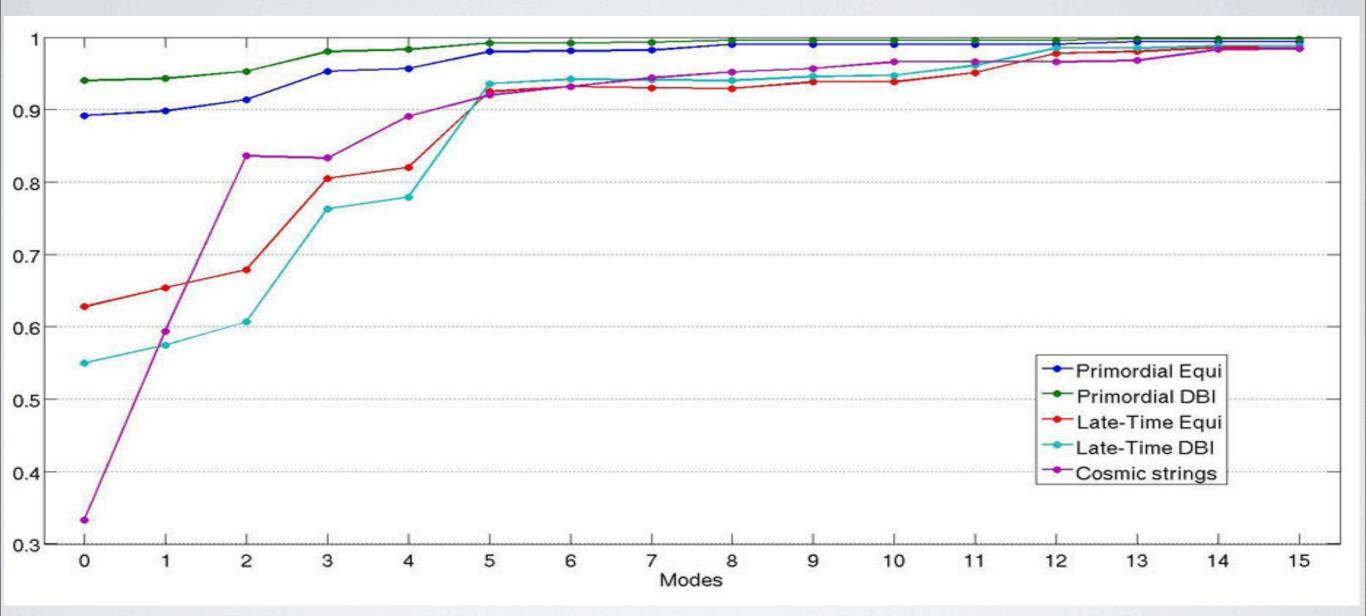
$$\bar{M}_p(\mathbf{\hat{n}}) = \sum_{lm} q_p(l) \frac{a_{lm}}{v_l \sqrt{C_l}} Y_{lm}(\mathbf{\hat{n}})$$

$$\bar{\mathcal{M}}_n(\hat{\mathbf{n}}) = \bar{M}_p(\hat{\mathbf{n}})\bar{M}_r(\hat{\mathbf{n}})\bar{M}_s(\hat{\mathbf{n}})$$

$$\beta_n = \int d^2 \hat{\mathbf{n}} \mathcal{M}_n(\hat{\mathbf{n}})$$

$$\mathcal{E} = \frac{1}{N} \sum_{n=0}^{n_{\text{max}}} \bar{\alpha}_n^{\mathcal{Q}} \bar{\beta}_n^{\mathcal{Q}}$$

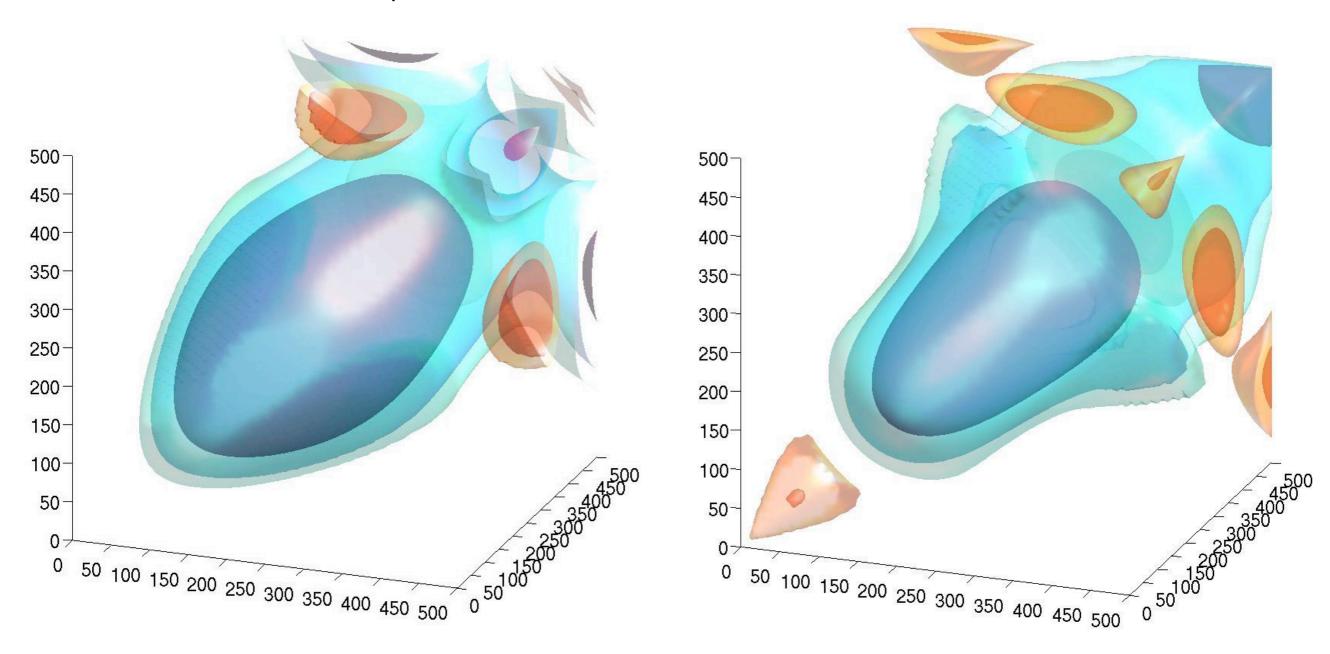
Now the projection is in alpha rather than beta



Correlation of the separable approximation to the original bispectra, both primordial and CMB

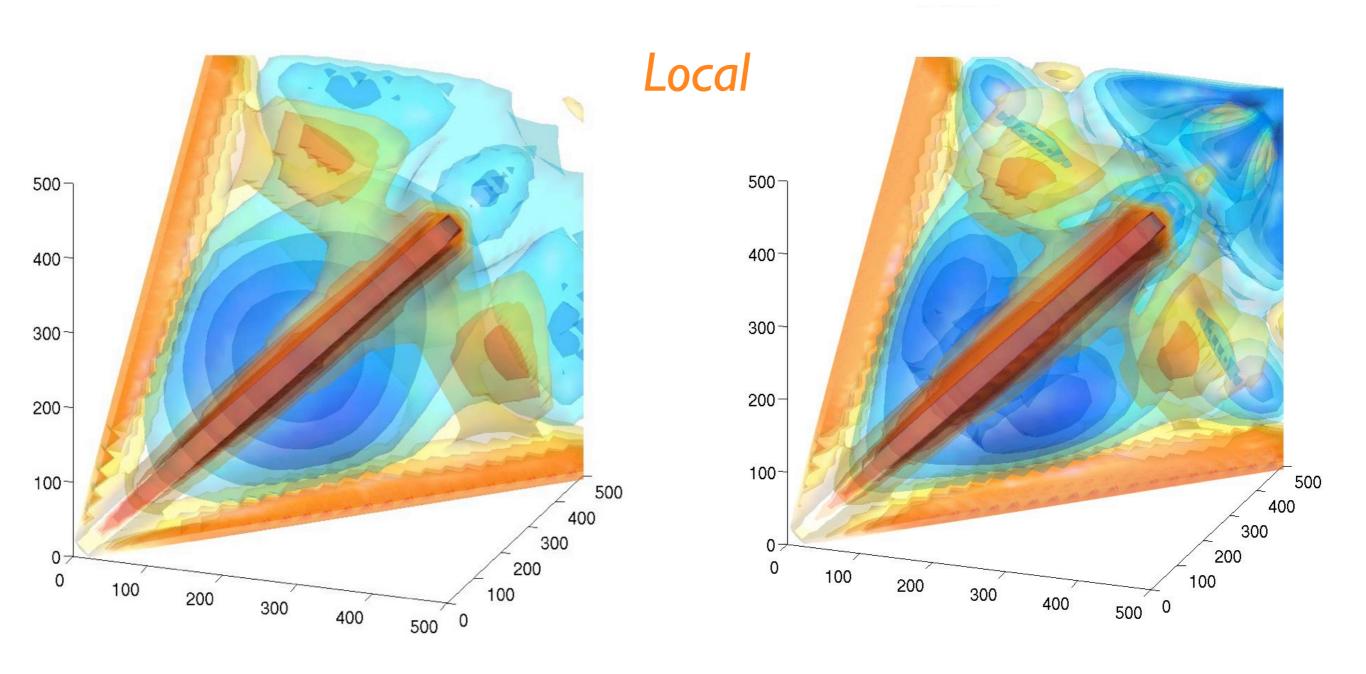
Bispectrum reconstruction

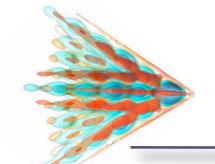
Recovery of 3sigma equil & local bispectrum signal from simulated maps with WMAP noise, beam and KQ75 mask



Bispectrum reconstruction

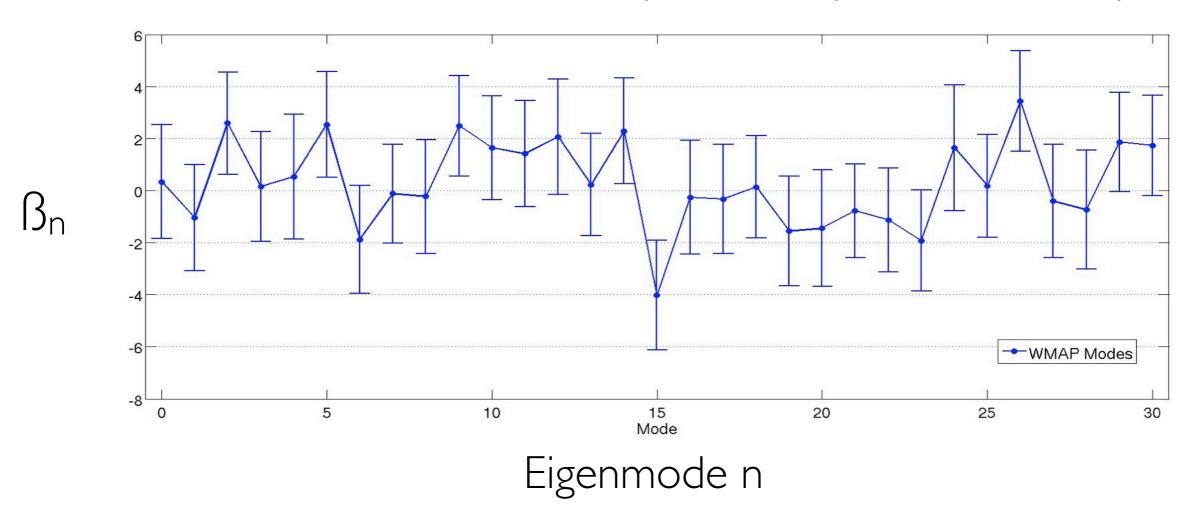
Recovery of 3sigma equil & local bispectrum signal from simulated maps with WMAP noise, beam and KQ75 mask





WMAP mode decomposition

Orthonormal coefficients from preliminary WMAP5 analysis

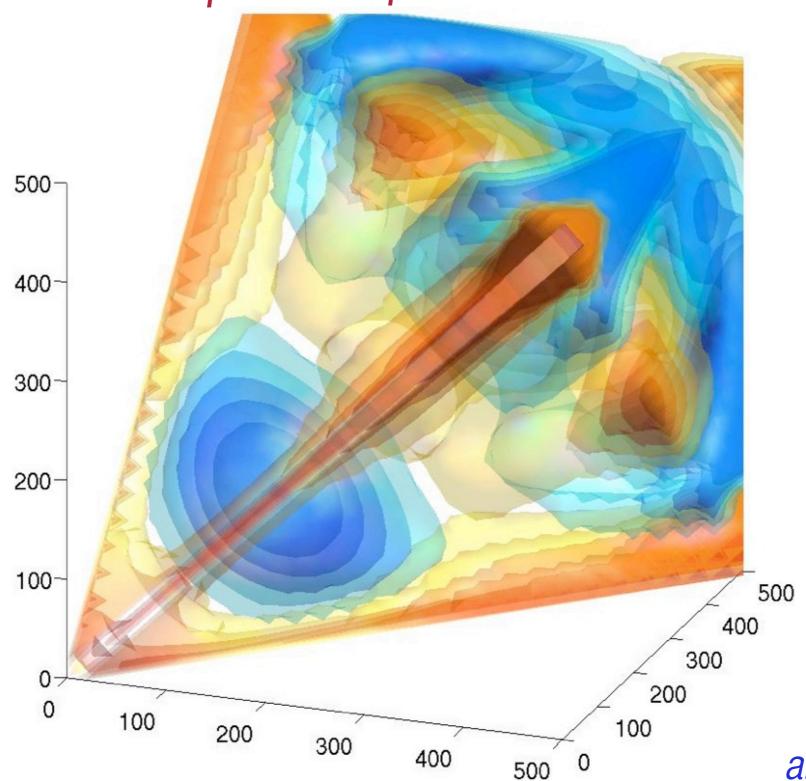


Note: Late-time general method see all bispectrum contributions (unlike specific primordial filters)

Larger than expected foreground or other contamination, but inhomogeneous signal successfully subtracted by linear term

The Bispectrum of the Universe

WMAP5 bispectrum after noise subtraction



arXiv:1006.1642

Estimation

We have used these methods to constrain all scale invariant models and an oscillatory model for a selection of parameter space via the bispectrum

Model	$F_{ m NL}$	$(f_{\rm NL})$
Constant	35.1 ± 27.4	(149.4 ± 116.8)
DBI	26.7 ± 26.5	(146.0 ± 144.5)
Equilateral	25.1 ± 26.4	(143.5 ± 151.2)
Flat (Smoothed)	35.4 ± 29.2	(18.1 ± 14.9)
Ghost	22.0 ± 26.3	(138.7 ± 165.4)
Local	54.4 ± 29.4	(54.4 ± 29.4)
Orthogonal	-16.3 ± 27.3	(-79.4 ± 133.3)
Single	28.8 ± 26.6	(142.1 ± 131.3)
Warm	24.2 ± 27.3	(94.7 ± 106.8)

Scale Phase	150	200	250	300	400	500	600	700
0	57 (30)	-52(33)	-25(32)	1 (30)	1 (27)	8 (26)	18 (25)	23 (25)
$\pi/8$	67 (36)	-26(27)	-36(30)	-6(25)	-4(26)	-2(27)	12 (26)	20 (25)
$\pi/4$	68 (42)	-10(29)	-43(30)	-11(21)	-7(25)	-10(27)	-1(28)	13 (27)
$3\pi/8$	49 (46)	7 (34)	-42(32)	-18(24)	-9(25)	-14(26)	-13(28)	-2(28)
$\pi/2$	15 (46)	32 (41)	-30(35)	-32(34)	-10(25)	-16(25)	-18(27)	-14(28)
$5\pi/8$	-19(42)	63 (46)	-15(35)	-38(43)	-11(25)	-16(25)	-20(26)	-20(27)
$3\pi/4$	-39(35)	87 (48)	0 (35)	-25(41)	-11(26)	-15(25)	-21(25)	-23(26)
$7\pi/8$	-48(30)	81 (43)	13 (34)	-11(35)	-7(27)	-13(25)	-20(25)	-23(25)

$$S^{feat}(k_1, k_2, k_3) = \frac{1}{N} \sin\left(2\pi \frac{k_1 + k_2 + k_3}{3k^*} + \Phi\right)$$

NORMALIZATION & BLIND NG SURVEY

$$F_{\text{NL}} = \frac{1}{N\bar{N}_{\text{loc}}} \sum_{l_i m_i} \mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3} \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}}$$

$$N^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}} \qquad \bar{N}_{loc}^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{loc}(f_{NL}=1)^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}}$$

$$F_{\mathrm{NL}}^{2} = \frac{1}{N} \sum_{n} \bar{\alpha}_{n}^{\mathcal{R}^{2}}$$

NORMALIZATION & BLIND NG SURVEY

$$F_{\text{NL}} = \frac{1}{N\bar{N}_{\text{loc}}} \sum_{l_i m_i} \mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3} \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}}$$

$$N^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}} \qquad \bar{N}_{loc}^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{loc}(f_{NL}=1)^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}}$$

$$F_{\text{NL}}^2 = \frac{1}{N} \sum_{n} \bar{\alpha}_n^{\mathcal{R}^2}$$

We live in a Gaussian Universe

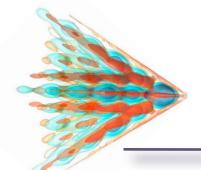
NORMALIZATION & BLIND NG SURVEY

$$F_{\text{NL}} = \frac{1}{N\bar{N}_{\text{loc}}} \sum_{l_i m_i} \mathcal{G}_{m_1 m_2 m_3}^{l_1 l_2 l_3} b_{l_1 l_2 l_3} \frac{a_{l_1 m_1} a_{l_2 m_2} a_{l_3 m_3}}{C_{l_1} C_{l_2} C_{l_3}}$$

$$N^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}} \qquad \bar{N}_{loc}^{2} = \sum_{l_{i}} \frac{B_{l_{1}l_{2}l_{3}}^{loc}(f_{NL}=1)^{2}}{C_{l_{1}}C_{l_{2}}C_{l_{3}}}$$

$$F_{\rm NL}^2 = \frac{1}{N} \sum_{n} \bar{\alpha}_n^{\mathcal{R}^2}$$

We live in a Gaussian Universe ... for the moment!



Trispectrum estimation

Easiest to tackle the non-diagonal case (most models)

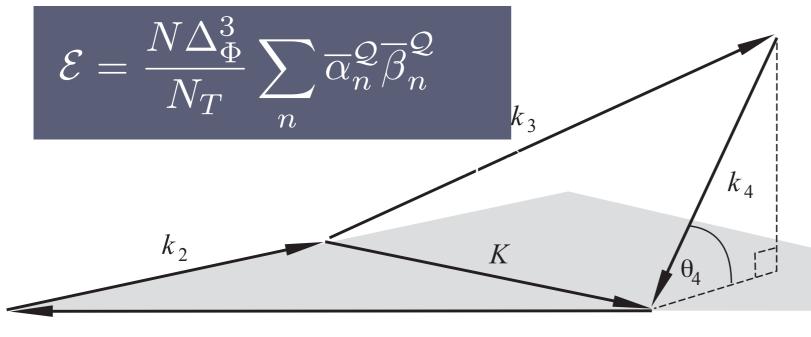
$$\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3 \Phi(\mathbf{k}_4) \rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3 + \mathbf{k}_4) T(k_1, k_2, k_3, k_4)$$

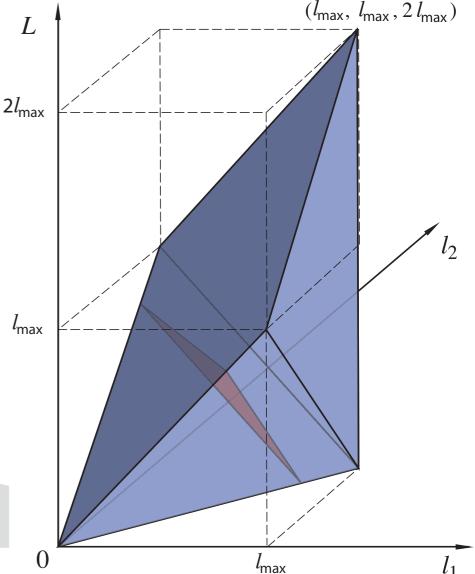
$$\langle a_{l_1m_1}a_{l_2m_2}a_{l_3m_3}a_{l_4m_4}\rangle = \left(\int d^2\hat{n}Y_{l_1m_1}(\hat{\mathbf{n}})Y_{l_2m_2}(\hat{\mathbf{n}})Y_{l_3m_3}(\hat{\mathbf{n}})Y_{l_4m_4}(\hat{\mathbf{n}})\right)t_{l_1l_2l_3l_4}$$
Regan, EPS & JRF, arXiv:1004.2915

We can expand in polynomials

$$\frac{v_{l_1}v_{l_2}v_{l_3}v_{l_4}v_L}{\sqrt{C_{l_1}C_{l_2}C_{l_3}C_{l_4}}}t_{l_3l_4}^{l_1l_2}(L) = \sum_{m} \overline{\alpha}_{m}^{\mathcal{Q}} \overline{\mathcal{Q}}_{m}$$

The modal estimator becomes





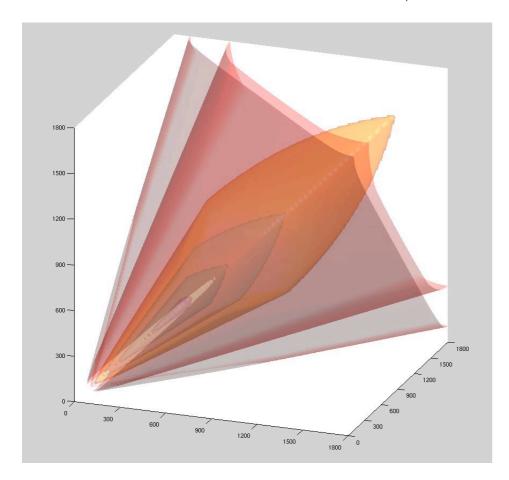
String Bispectrum & Trispectrum

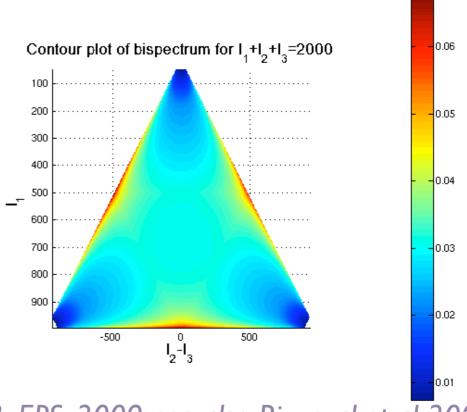
Late-time gravitational effect - integrated after decoupling

$$b_{\ell_1\ell_2\ell_3}^{\text{string}} = \frac{A}{(\zeta\ell_1\ell_2\ell_3)^2} \left[(\ell_3^2 - \ell_1^2 - \ell_2^2) \left(\frac{L}{2\ell_3} + \frac{\ell_3}{50L} \right) \sqrt{\frac{\ell_*}{500}} \operatorname{erf}(0.3\zeta\ell_3) + 2 \operatorname{perm.} \right], \qquad (\ell \le 2000)$$

where $\ell_{min} = \min(\ell_1, \ell_2, \ell_3)$, $\ell_* = \min(500, \ell_{min})$, $\zeta = \min(1/500, 1/\ell_{min})$, $A \sim (8\pi G\mu)^3$ and

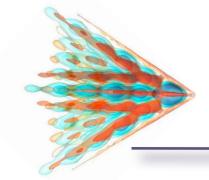
$$L = \zeta \sqrt{\frac{1}{2}(\ell_1^2 \ell_2^2 + \ell_2^2 \ell_3^2 + \ell_3^2 \ell_1^2) - \frac{1}{4}(\ell_1^4 + \ell_2^4 + \ell_3^4)}.$$





Regan & EPS, 2009; see also Ringeval et al 2009

Symmetry considerations suppress 3pt relative to 4pt



Trispectrum constraints

Fergusson, Regan & EPS, arXiv:1012.6039

We have constrained a small selection of models via the trispectrum (normalised to gNL)

$$G_{NL}^{local} = 1.62 \pm 6.98 \times 10^5$$

 $G_{NL}^{const} = -2.64 \pm 7.20 \times 10^5$
 $G_{NL}^{equi} = -3.02 \pm 7.27 \times 10^5$
 $G\mu < 1.1 \times 10^{-6}$

Prospects for Planck good - notably stringent cosmic string bound

Modal LSS estimator

Estimator for a theoretical bispectrum B(k₁,k₂,k₃)

$$\mathcal{E} = \frac{(2\pi)^3}{N^2} \int \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \frac{d^3k_3}{(2\pi)^3} \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{\delta_{\mathbf{k}_1}^{obs} \delta_{\mathbf{k}_2}^{obs} \delta_{\mathbf{k}_3}^{obs} B(k_1, k_2, k_3)}{P(k_1)P(k_2)P(k_3)}$$

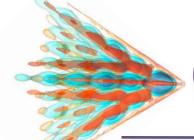
- seems computationally intensive with O(n_{max}⁶) operations
- $B(k_1, k_2, k_3)$ acquires extra NG from nonlinear gravity
- multiple N-body simulations/analysis for each model tested
- Mode expansion for bispectrum (and trispectrum)

$$\frac{\sqrt{k_1 k_2 k_3} B(k_1, k_2, k_3)}{\sqrt{P(k_1) P(k_2) P(k_3)}} = \sum_{n=1}^{\infty} \alpha_n^{\mathcal{Q}} Q(k_1, k_2, k_3)$$

Modal LSS estimator

$$\mathcal{E} = \frac{1}{N^2} \sum \alpha_n^{\mathcal{Q}} \beta_n^{\mathcal{Q}}$$

FRS, arXiv: 1008.1730



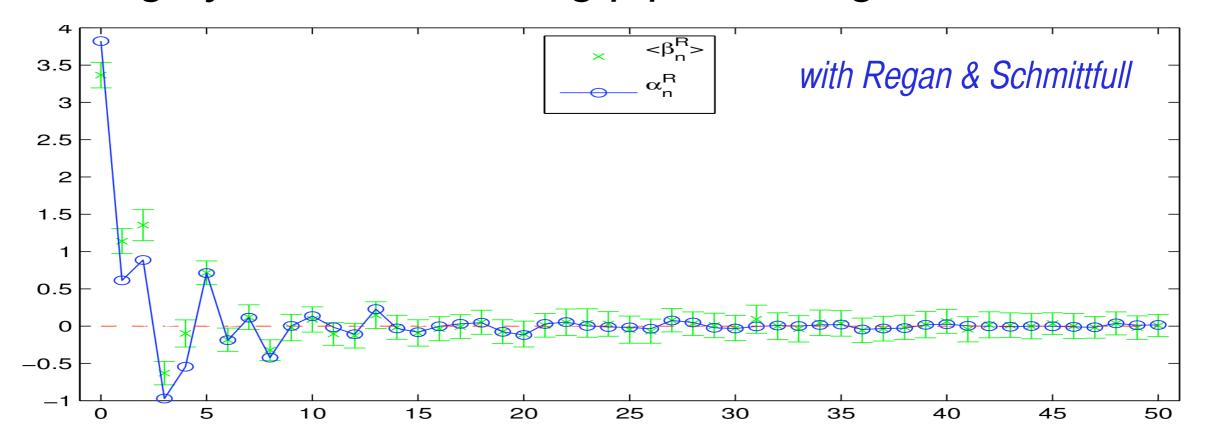
Generic LSS Initial Conditions

N-body simulations with arbitrary bispectrum i.c.s

$$\Phi^{B}(\mathbf{k}) = \int \frac{d^{3}\mathbf{k}'}{(2\pi)^{3}} \frac{d^{3}\mathbf{k}''}{(2\pi)^{3}} \frac{(2\pi)^{3}\delta(\mathbf{k} + \mathbf{k}' + \mathbf{k}'')B(k, k', k'')\Phi^{G}(\mathbf{k}')\Phi^{G}(\mathbf{k}'')}{P(k')P(k'')}, \qquad FRS, \text{ arXiv: } 1008.1730$$

$$= \sum_{n} \alpha_{n} \sqrt{\frac{P(k)}{k}} q_{\{r}(k) \int d^{3}\mathbf{x} e^{i\mathbf{k}.\mathbf{x}} M_{s}(\mathbf{x}) M_{t\}}(\mathbf{x}), \qquad \text{see also Verde et al. '10,'11}$$

- ... and trispectra $\Phi^T(\mathbf{k}) = \sum_n \bar{\alpha}_n^{\mathcal{Q}} q_r(k) \int d^3\mathbf{x} e^{i\mathbf{k}.\mathbf{x}} M_s(\mathbf{x}) M_t(\mathbf{x}) M_u(\mathbf{x})$.
- highly efficient working pipeline, e.g. local ...



Intermediate Summary

- Quantitative calculation of CMB bispectrum (in general case)
- Comp. tractable & robust Applicable to cosmic strings, lensing etc
- New WMAP5 constraints on primordial models total FNL

Model	$F_{ m NL}$	$(f_{ m NL})$
Constant	35.1 ± 27.4	(149.4 ± 116.8)
DBI	26.7 ± 26.5	$1.0146.0 \pm 144.5$
Equilateral	25.1 ± 26.4	$1.0143.5 \pm 151.2$
Flat (Smoothed)	35.4 ± 29.2	(18.1 ± 14.9)
\mathbf{Ghost}	22.0 ± 26.3	$1.38.7 \pm 165.4$
Local	54.4 ± 29.4	(54.4 ± 29.4)
Orthogonal	-16.3 ± 27.3	(-79.4 ± 133.3)
Single	28.8 ± 26.6	$1.0142.1 \pm 131.3$
Warm	24.2 ± 27.3	94.7 ± 106.8
Warm (Smoothed)	10.3 ± 27.2	(47.4 ± 125.4)

- Constraints on wide range of <u>feature</u> models i*>150
- New constraints on trispectrum (local, equil, and strings)
- Real discovery potential with Planck satellite at $\Delta f_{NL} = 5$
- Similar modal approach tractable LSS truly generic i.c.s